Dual DPDT Ultra-Low Ron Switch

The NLAS3799B is an ultra–low R_{ON} dual DPDT and a 0.5 Ω R_{ON} analog switch. This device is designed for low operating voltage, high current switching of speaker output and earpiece for cellphone applications. It can switch a balanced stereo output. The NLAS3799B can handle a balanced microphone/speaker/ring–tone generator in a monophone mode. The device contains a break–before–make (BBM) feature.

Features

- Single Supply Operation
 1.65 to 4.5 V V_{CC}
 Function Directly from LiON Battery
- Maximum Breakdown Voltage: 5.5 V
- Low Static Power
- NLAS3799B Interfaces with 2.8 V Chipset NLAS3799BL Interfaces with 1.8 V Chipset
- These are Pb-Free Devices

Typical Applications

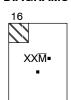
- Cell Phone Speaker/Microphone Switching
- Ringtone-Chip/Amplifier Switching
- Four Unbalanced (Single-Ended) Switches
- Stereo Balanced (Push-Pull) Switching

Important Information

• ESD Protection:

Human Body Model (HBM) > 8000 V Machine Model (MM) > 400 V

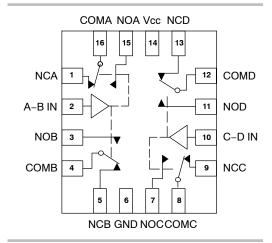
- Continuous Current Rating Through each Switch ±300 mA
- Conforms to: JEDEC MO-220, Issue H, Variation VEED-6
- Package:
 - ◆ 1.8 x 2.6 x 0.75 mm WQFN-16 Pb-Free
 - ◆ 1.8 x 2.6 x 0.55 mm UQFN-16 Pb-Free


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

WQFN-16 CASE 488AP


UQFN-16 CASE 488AU

 $\begin{array}{lll} XX & = Specific \ Device \ Code \\ AK = NLAS3799BMNR2G \\ AL = NLAS3799BLMNR2G \\ AX = NLAS3799BMUR2G \\ \hline M & = Date \ Code/Assembly \ Location \end{array}$

■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

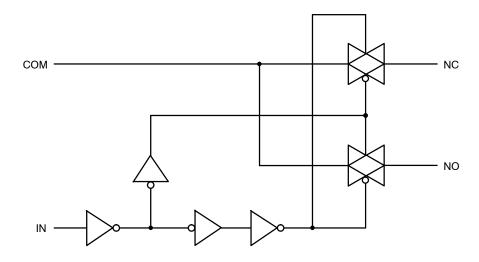


Figure 1. Input Equivalent Circuit

PIN DESCRIPTION

QFN PIN #	Symbol	Name and Function
1, 3, 5, 7, 9, 11, 13, 15	NO A-D, NC A-D	Independent Channels
2, 10	A-B IN, C-D IN	Controls
4, 8, 12, 16	COM A-D	Common Channels
6	GND	Ground (V)
14	V _{CC}	Positive Supply Voltage

TRUTH TABLE

IN	NO	NC
Н	ON	OFF*
L	OFF*	ON

^{*}High impedance.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Positive DC Supply Voltage	-0.5 to +5.5	V
V _{IS}	Analog Input Voltage (V _{NO} , V _{NC} , or V _{COM})	$-0.5 \le V_{IS} \le V_{CC} + 0.5$	V
V _{IN}	Digital Select Input Voltage	$-0.5 \le V_{IN} \le +V_{CC}$	V
I _{anl1}	Continuous DC Current from COM to NC/NO	±300	mA
I _{anl-pk1}	Peak Current from COM to NC/NO, 10 Duty Cycle (Note 1)	±500	mA
I _{clmp}	Continuous DC Current into COM/NO/NC with Respect to V _{CC} or GND	±100	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Defined as 10% ON, 90% OFF Duty Cycle.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage	1.65	4.5	V
V _{IN}	Digital Select Input Voltage	GND	V _{CC}	V
V _{IS}	Analog Input Voltage (NC, NO, COM)	GND	V _{CC}	V
T _A	Operating Temperature Range	-40	+85	°C
t _r , t _f	Input Rise or Fall Time, IN $ V_{CC} = 1.6 \text{ V} - 2.7 \text{ V} $ $ V_{CC} = 3.0 \text{ V} - 4.5 \text{ V} $		20 10	ns/V

NLAS3799B DC CHARACTERISTICS - DIGITAL SECTION (Voltages Referenced to GND)

				Guara	inteed Limit	
Symbol	Parameter	Condition	V _{CC}	25°C	–40°C to +85°C	Unit
V _{IH}	Minimum High-Level Input Voltage, Select Inputs		3.0 4.3	1.4 2.0	1.4 2.0	V
V _{IL}	Maximum Low-Level Input Voltage, Select Inputs		3.0 4.3	0.5 0.8	0.5 0.8	V
I _{IN}	Maximum Input Leakage Current, Select Inputs	V _{IN} = V _{CC} or GND	4.3	±0.1	±1.0	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} = 4.5 V or GND	0	±0.5	±2.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (Note 2)	Select and V _{IS} = V _{CC} or GND	1.65 to 4.5	±1.0	±2.0	μΑ

^{2.} Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

NLAS3799B DC ELECTRICAL CHARACTERISTICS - ANALOG SECTION

				Gua	ranteed	Maximun	n Limit	
				25	°C	-40°C to	o +85°C	
Symbol	Parameter	Condition	V _{CC}	Min	Max	Min	Max	Unit
R _{ON}	NC/NO On-Resistance (Note 3)	$\begin{aligned} &V_{IN} = V_{IL} \text{ or } V_{IN} = V_{IH} \\ &V_{IS} = \text{GND to } V_{CC} \\ &I_{IN}I = 100 \text{ mA} \end{aligned}$	3.0 4.3		0.5 0.4		0.6 0.5	Ω
R _{FLAT}	NC/NO On-Resistance Flatness (Notes 3 and 4)	I _{COM} = 100 mA V _{IS} = 0 to V _{CC}	3.0 4.3		0.15 0.15		0.15 0.15	Ω
ΔR_{ON}	On-Resistance Match Between Channels (Notes 3 and 5)	V _{IS} = 1.5 V; I _{COM} = 100 mA V _{IS} = 2.2 V; I _{COM} = 100 mA	3.0 4.3		0.05 0.05		0.05 0.05	Ω
I _{NC(OFF)} I _{NO(OFF)}	NC or NO Off Leakage Current (Note 3)	$ \begin{aligned} &V_{IN} = V_{IL} \text{ or } V_{IH} \\ &V_{NO} \text{ or } V_{NC} = 0.3 \text{ V} \\ &V_{COM} = 4.0 \text{ V} \end{aligned} $	4.3	-10	10	-100	100	nA
I _{COM(ON)}	COM ON Leakage Current (Note 3)	$\begin{aligned} &V_{IN} = V_{IL} \text{ or } V_{IH} \\ &V_{NO} \text{ 0.3 V or 4.0 V with} \\ &V_{NC} \text{ floating or} \\ &V_{NC} \text{ 0.3 V or 4.0 V with} \\ &V_{NO} \text{ floating} \\ &V_{COM} = \text{ 0.3 V or 4.0 V} \end{aligned}$	4.3	-10	10	-100	100	nA

^{3.} Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

^{4.} Flatness is defined as the difference between the maximum and minimum value of On-resistance as measured over the specified analog signal ranges.

^{5.} $\Delta R_{ON} = R_{ON(MAX)} - R_{ON(MIN)}$ between NCn or NOn.

NLAS3799BL DC CHARACTERISTICS - DIGITAL SECTION (Voltages Referenced to GND)

				Guara	anteed Limit	
Symbol	Parameter	Condition	V _{CC}	25°C	-40 to +85°C	Unit
V _{IH}	Minimum High-Level Input Voltage, Select Inputs		3.0 4.3	1.3 1.6	1.3 1.6	V
V _{IL}	Maximum Low-Level Input Voltage, Select Inputs		3.0 4.3	0.5 0.6	0.5 0.6	V
I _{IN}	Maximum Input Leakage Current, Select Inputs	V _{IN} = V _{CC} or GND	4.3	±0.1	±1.0	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} = 4.5 V or GND	0	±0.5	±2.0	μΑ
Icc	Maximum Quiescent Supply Current (Note 6)	Select and V _{IS} = V _{CC} or GND	1.65 to 4.3	±40	±45	μΑ

^{6.} Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

NLAS3799BL DC ELECTRICAL CHARACTERISTICS - ANALOG SECTION

				Gua	ranteed	Maximun	n Limit	
				25	s°C	-40°C to	o +85°C	
Symbol	Parameter	Condition	V _{CC}	Min	Max	Min	Max	Unit
R _{ON}	NC/NO On-Resistance (Note 7)	$\begin{aligned} &V_{IN} = V_{IL} \text{ or } V_{IN} = V_{IH} \\ &V_{IS} = \text{GND to } V_{CC} \\ &I_{IN}I = 100 \text{ mA} \end{aligned}$	3.0 4.3		0.5 0.4		0.6 0.5	Ω
R _{FLAT}	NC/NO On-Resistance Flatness (Notes 7 and 8)	I _{COM} = 100 mA V _{IS} = 0 to V _{CC}	3.0 4.3		0.15 0.15		0.15 0.15	Ω
ΔR _{ON}	On-Resistance Match Between Channels (Notes 7 and 9)	V _{IS} = 1.5 V; I _{COM} = 100 mA V _{IS} = 2.2 V; I _{COM} = 100 mA	3.0 4.3		0.05 0.05		0.05 0.05	Ω
I _{NC(OFF)} I _{NO(OFF)}	NC or NO Off Leakage Current (Note 7)	$ \begin{aligned} &V_{IN} = V_{IL} \text{ or } V_{IH} \\ &V_{NO} \text{ or } V_{NC} = 0.3 \text{ V} \\ &V_{COM} = 4.0 \text{ V} \end{aligned} $	4.3	-10	10	-100	100	nA
I _{COM(ON)}	COM ON Leakage Current (Note 7)	$\begin{aligned} &V_{IN} = V_{IL} \text{ or } V_{IH} \\ &V_{NO} \text{ 0.3 V or 4.0 V with} \\ &V_{NC} \text{ floating or} \\ &V_{NC} \text{ 0.3 V or 4.0 V with} \\ &V_{NO} \text{ floating} \\ &V_{COM} = \text{ 0.3 V or 4.0 V} \end{aligned}$	4.3	-10	10	-100	100	nA

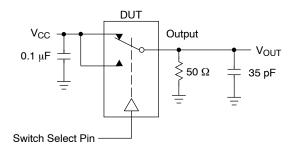
^{7.} Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

^{8.} Flatness is defined as the difference between the maximum and minimum value of On–resistance as measured over the specified analog signal ranges.

^{9.} $\Delta \ddot{R}_{ON} = R_{ON(MAX)} - R_{ON(MIN)}$ between NC1 and NC2 or between NO1 and NO2.

NLAS3799B/NLAS3799BL AC ELECTRICAL CHARACTERISTICS (Input $t_{\text{r}} = t_{\text{f}} = 3.0 \text{ ns}$)

				Guaranteed Maximum Limit				imit		
			V _{CC}	V _{IS}		25°C			°C to 5°C	
Symbol	Parameter	Test Conditions	(V)	(V)	Min	Тур*	Max	Min	Max	Unit
t _{ON}	Turn-On Time	$R_L = 50 \Omega$, $C_L = 35 pF$ (Figures 3 and 4)	2.3 – 4.3	1.5			50		60	ns
t _{OFF}	Turn-Off Time	$R_L = 50 \Omega$, $C_L = 35 pF$ (Figures 3 and 4)	2.3 – 4.3	1.5			30		40	ns
t _{BBM}	Minimum Break-Before-Make Time	$\begin{aligned} &\text{V}_{\text{IS}} = 3.0 \\ &\text{R}_{\text{L}} = 50 \ \Omega, \ \text{C}_{\text{L}} = 35 \ \text{pF} \\ &\text{(Figure 2)} \end{aligned}$	3.0	1.5	2	15				ns


		Typical @ 25, V _{CC} = 3.6 V	
C _{IN}	Control Pin Input Capacitance	3.0	pF
C _{SN}	SN Port Capacitance	72	pF
C _D	D Port Capacitance When Switch is Enabled	220	pF

^{*}Typical Characteristics are at 25°C.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

			V _{CC}	25°C	
Symbol	Parameter	Condition	(V)	Typical	Unit
BW	Maximum On-Channel -3 dB Bandwidth or Minimum Frequency Response (Figure 9)	V _{IN} centered between V _{CC} and GND (Figure 5)	1.65 – 4.5	19	MHz
V _{ONL}	Maximum Feed-through On Loss	V_{IN} = 0 dBm @ 100 kHz to 50 MHz V_{IN} centered between V_{CC} and GND (Figure 5)	1.65 – 4.5	-0.06	dB
V _{ISO}	Off-Channel Isolation	f = 100 kHz; V_{IS} = 1 V RMS; C_L = 5.0 pF V_{IN} centered between V_{CC} and GND(Figure 5)	1.65 – 4.5	-69	dB
Q	Charge Injection Select Input to Common I/O (Figure 8)	$V_{IN} = V_{CC \text{ to}}$ GND, $R_{IS} = 0 \Omega$, $C_L = 1.0 \text{ nF}$ $Q = C_L \times \Delta V_{OUT}$ (Figure 6)	1.65 – 4.5	51	pC
THD	Total Harmonic Distortion THD + Noise (Figure 7)	F_{IS} = 20 Hz to 20 kHz, R_L = R_{gen} = 600 Ω , C_L = 50 pF V_{IS} = 2 V_{PP}	4.3	0.042	%
VCT	Channel-to-Channel Crosstalk (Figure 10)	f = 100 kHz; V_{IS} = 1.0 V RMS, C_L = 5.0 pF, R_L = 50 Ω V_{IN} centered between V_{CC} and GND (Figure 5)	1.65 – 4.5	-90	dB

^{10.} Off-Channel Isolation = 20log10 (V_{COM}/V_{NO}), V_{COM} = output, V_{NO} = input to off switch.

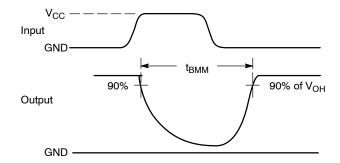
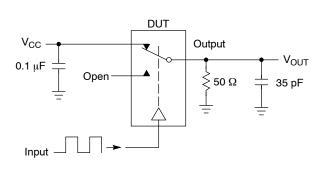



Figure 2. t_{BBM} (Time Break-Before-Make)

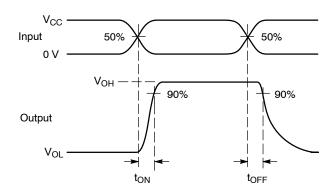
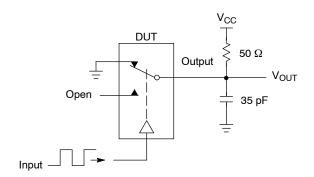



Figure 3. t_{ON}/t_{OFF}

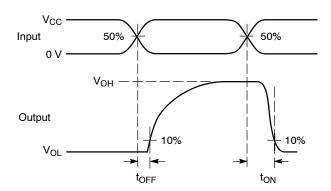
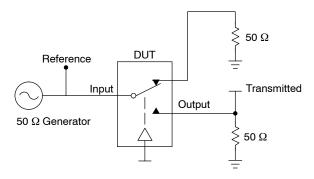



Figure 4. t_{ON}/t_{OFF}

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $V_{\rm ISO}$, Bandwidth and $V_{\rm ONL}$ are independent of the input signal direction.

$$\begin{split} &V_{ISO} = \text{Off Channel Isolation} = 20 \text{ Log } \left(\frac{V_{OUT}}{V_{IN}}\right) \text{ for } V_{IN} \text{ at } 100 \text{ kHz} \\ &V_{ONL} = \text{On Channel Loss} = 20 \text{ Log } \left(\frac{V_{OUT}}{V_{IN}}\right) \text{ for } V_{IN} \text{ at } 100 \text{ kHz to } 50 \text{ MHz} \end{split}$$

Bandwidth (BW) = the frequency 3 dB below V_{ONL}

 V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω

Figure 5. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V_{ONL}

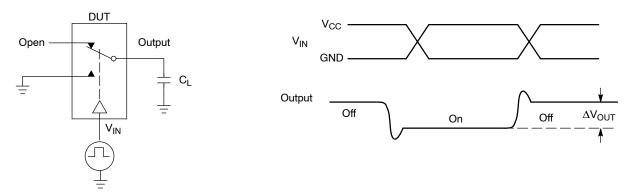


Figure 6. Charge Injection: (Q)

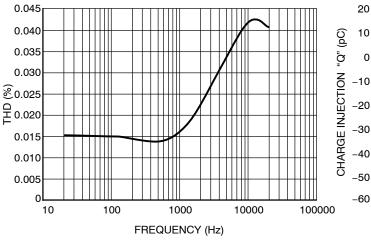


Figure 7. Total Harmonic Distortion vs. Frequency

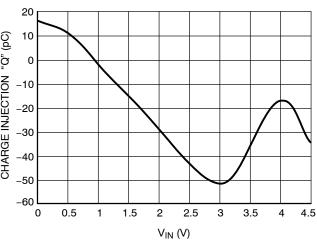


Figure 8. Charge Injection @ 0 V < V_{CC} < 4.5 V

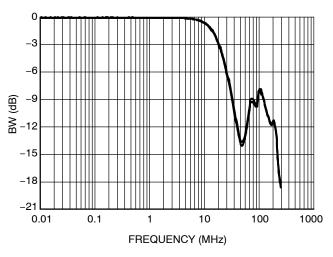


Figure 9. Bandwidth vs. Frequency

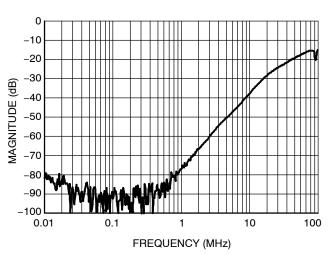


Figure 10. Cross-Talk vs. Frequency

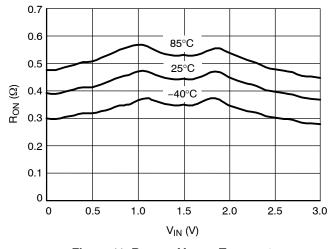


Figure 11. R_{ON} vs. V_{IN} vs. Temperature @ V_{CC} = 3.0 V

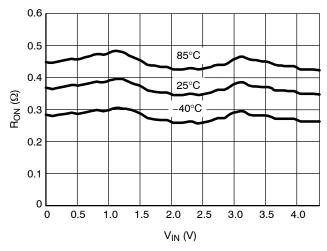
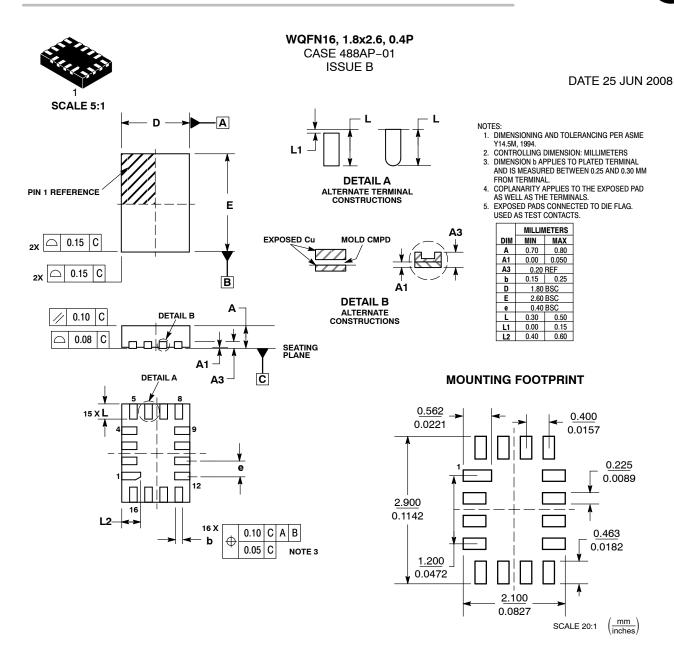
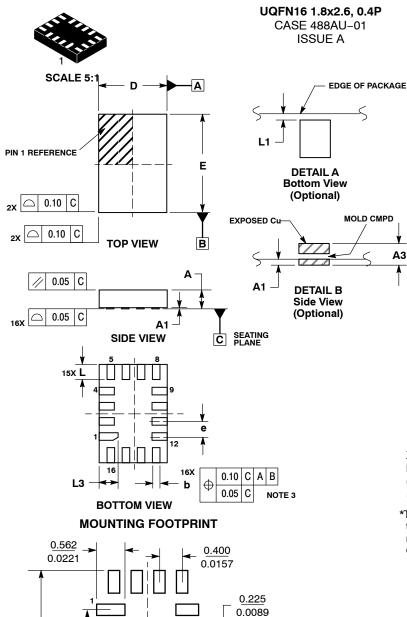



Figure 12. R_{ON} vs. V_{IN} vs. Temperature @ V_{CC} = 4.3 V

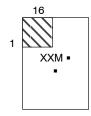
DEVICE ORDERING INFORMATION


Device Order Number	Package Type	Tape & Reel Size [†]
NLAS3799BMNR2G	WQFN-16 (Pb-Free)	3000 / Tape & Reel
NLAS3799BLMNR2G	WQFN-16 (Pb-Free)	3000 / Tape & Reel
NLAS3799BMUR2G	UQFN-16 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DOCUMENT NUMBER:	98AON20790D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	WQFN16, 1.8 X 2.6, 0.4P		PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



DATE 01 AUG 2007

- IOTES:
 1 DIMENSIONING AND TOLERANCING PER ASME
 Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS
 3 DIMENSION & APPLIES TO PLATED TERMINAL
 AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.45	0.60		
A1	0.00	0.05		
A3	0.127 REF			
b	0.15	0.25		
D	1.80 BSC			
E	2.60 BSC			
е	0.40 BSC			
L	0.30	0.50		
L1	0.00	0.15		
L3	0.40	0.60		

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

М = Date Code/Assembly Location

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

DOCUMENT NUMBER:	98AON22494D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	16 PIN UQFN, 1.8 X 2.6, 0.4P		PAGE 1 OF 1

0.463 0.0182

mm

SCALE 20:1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

2.900 0.1142

> 1.200 0.0472

> > 2.100 0.0827

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative