High Voltage Full Bridge Drive ICs SLA2402MS

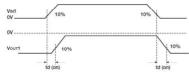
■Features

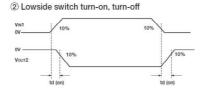
- •One Package Full Bridge Driver Consisted of High Voltage IC and Power MOSFETs(4 pieces)
- •High Voltage Driver which accepts direct connection to the input sgnal line
- •External components such as high voltage diodes and capacitors are not required

■Absolute Maximum Ratings

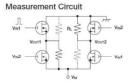
Parameter	Symbol	Ratings	Unit	Conditions
Power source voltage *	VM	500	٧	
Input voltage	VIN	15	V	
output voltage Vo		500	V	
Output current	lo	15	A W	P _W ≦250μs Without heatsink
Power dissipation	PD	5 (Ta=25°C)		
Storage temperature	ge temperature Tstg		°C	
Operation temperature	eration temperature Topr		°C	

^{*} Power GND (D terminal) to -HV (-HV terminal) voltage.


■Electrical Characteristics

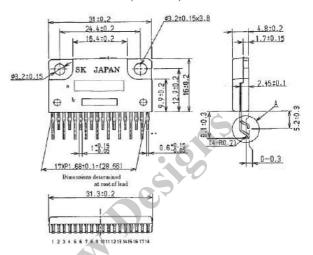

Parameter	Symbol	Ratings			Unit	Conditions	
		min	typ	max	Offic	Conditions	
Power MOS FET output breakdown voltage	BV _{out}	500			V	Ιο=100μΑ	
Power MOS FET output leakage voltage	IOUT (off)			100	μA	Vo=500V	
High-side Power MOS FET output on-state voltage	Vour (on) 1	0.28	0.4	0.52	V	I _O =0.4A, V _{IN} =10V	
	V _{OUT (on)} 2	1.4	2.0	2.6	V	Io=2A, V _{IN} =10V	
Low-side Power MOS FET output on-state voltage	Vour (on) 1	0.28	0.4	0.52	V	I ₀ =0.4A, V _{GL} =10V	
	Vour (on) 2	1.4	2.0	2.6	V	I _O =2A, V _{GL} =10V	
Quiescent circuit current	Icc 1			3.0	mA	V _{CC} =4.5 to 15V	
	Icc 2			4.0	mA	V _{CC} =10V, V _M =400V	
Operating circuit current	Icc 3			4.0	mA	Vcc=10V, V _M =400V	
Input voltage (High level)	VIH	0.8V _{CC}			V	V _{CC} =4.5 to 15V	
Input voltage (Low level)	VIL			0.2Vcc	V	V _{CC} =4.5 to 15V	
Delay time *	t _d (on)		1.4		μs	V _{CC} =10A, V _{IN} =10V, V _M =85A, I _O =0.41A	
	td (off)		3.3		μs		
	Δt			2.5	μs		
Operating voltage	Vcc	7		15	V	-40 to +105°C	

* About delay time

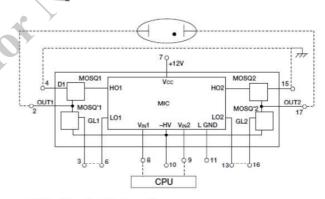

Signal input waveform vs output waveform

1 Highside switch turn-on, turn-off

* Δt : $\Delta t = td$ (on) – td (off)

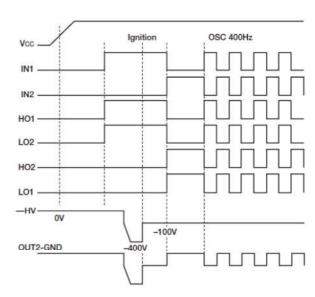


Conditions V_{CC}=10V, V_{IN}=10V (pulse) V_M=85V I_O=0.41A (R_L=207Ω)

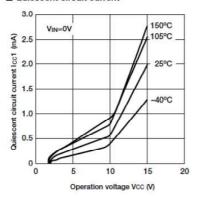

*When pulse signal is inputted to V_{IN1}, R_L on solid line is ON and dotted line R_L is off. On the contrary, when pulse signal is

inputted to V_{IN2}, R_L on dotted line is ON and dotted line R_L is off.

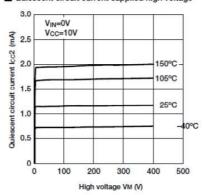
■External Dimensions (unit:mm)



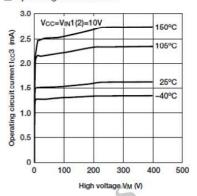
■Block Diagram

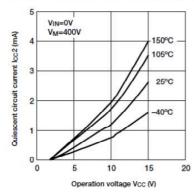

* Dotted Line: Outside Connection

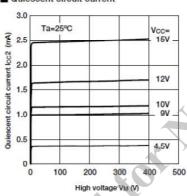
■Timing Chart

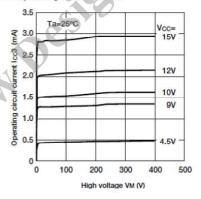


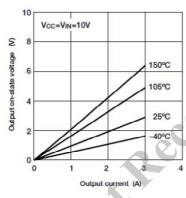
Electrical Characteristics

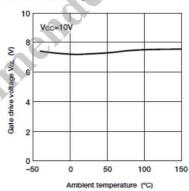

■ Quiescent circuit current

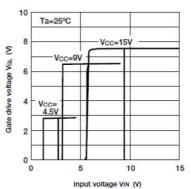

■ Quiescent circuit current supplied high voltage

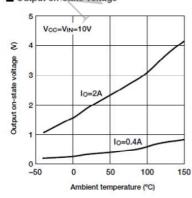

Operating circuit current

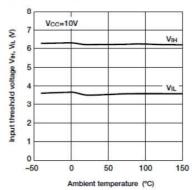

■ Quiescent circuit current supplied high voltage


Quiescent circuit current

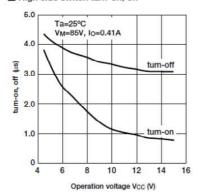

■ Operating circuit current


■ Output on-state voltage

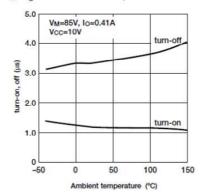

■ Gate drive voltage


■ Gate drive voltage

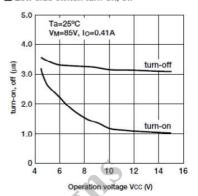
Output on-state voltage

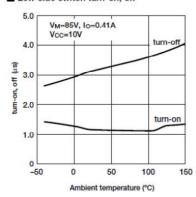


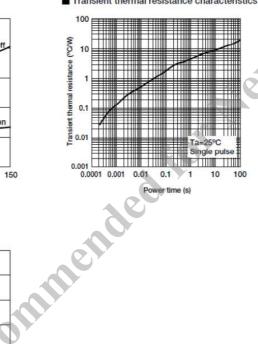
Input threshold voltage

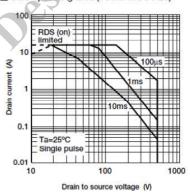


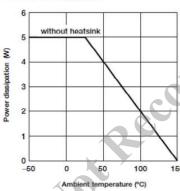
Electrical Characteristics


■ High side switch turn-on, off


■ High side switch turn-on, off


Low side switch turn-on, off


Low side switch turn-on, off


■ Transient thermal resistance characteristics

■ Safe operating area (Power MOS FET)

■ Power derating curve

